Insights into the function and structural flexibility of the periplasmic molecular chaperone SurA.
نویسندگان
چکیده
SurA is the primary periplasmic molecular chaperone that facilitates the folding and assembling of outer membrane proteins (OMPs) in Gram-negative bacteria. Deletion of the surA gene in Escherichia coli leads to a decrease in outer membrane density and an increase in bacterial drug susceptibility. Here, we conducted mutational studies on SurA to identify residues that are critical for function. One mutant, SurA(V37G), significantly reduced the activity of SurA. Further characterization indicated that SurA(V37G) was structurally similar to, but less stable than, the wild-type protein. The loss of activity in SurA(V37G) could be restored through the introduction of a pair of Cys residues and the subsequent formation of a disulfide bond. Inspired by this success, we created three additional SurA constructs, each containing a disulfide bond at different regions of the protein between two rigid secondary structural elements. The formation of disulfide bond in these mutants has no observable detrimental effect on protein activity, indicating that SurA does not undergo large-scale conformational change while performing its function.
منابع مشابه
Diverse sequences are functional at the C-terminus of the E. coli periplasmic chaperone SurA.
SurA is a major periplasmic molecular chaperone in Escherichia coli and has been shown to assist the biogenesis of several outer membrane proteins. The C-terminal fragment of SurA folds into a short β-strand, which forms a small three-stranded anti-parallel β-sheet module with the N-terminal β-hairpin. We found that the length of the C-terminal fragment, rather than its exact amino acid composi...
متن کاملThe virulence factor PEB4 (Cj0596) and the periplasmic protein Cj1289 are two structurally related SurA-like chaperones in the human pathogen Campylobacter jejuni.
The PEB4 protein is an antigenic virulence factor implicated in host cell adhesion, invasion, and colonization in the food-borne pathogen Campylobacter jejuni. peb4 mutants have defects in outer membrane protein assembly and PEB4 is thought to act as a periplasmic chaperone. The crystallographic structure of PEB4 at 2.2-Å resolution reveals a dimer with distinct SurA-like chaperone and peptidyl...
متن کاملDefining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli.
Integral beta-barrel proteins (OMPs) are a major class of outer membrane proteins in Gram-negative bacteria. In Escherichia coli, these proteins are synthesized in the cytoplasm, translocated across the inner membrane via the Sec machinery, and assembled in the outer membrane through an unknown mechanism that requires the outer membrane YaeT complex and the periplasmic chaperones SurA, DegP, an...
متن کاملThe Activity and Specificity of the Outer Membrane Protein Chaperone SurA Are Modulated by a Proline Isomerase Domain
UNLABELLED SurA is a component of the periplasmic chaperone network that plays a central role in biogenesis of integral outer membrane β-barrel proteins (OMPs) in Escherichia coli. Although SurA contains two well-conserved proline isomerase (PPIase) domains, the contribution of these domains to SurA function is unclear. In the present work, we show that defects in OMP assembly caused by mutatio...
متن کاملStructural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. The mechanism of chaperone-mediated P-ring formation is poorly understood. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 195 5 شماره
صفحات -
تاریخ انتشار 2013